
Introduction to Kinetics
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The final aim of kinetic research is to obtain knowledge
of the nature of the reaction from a study of its progress. Michaelis and Menten (1913)153

In the new enzymology, mechanisms are defined by rigorous, com-
prehensive kinetic analysis based on direct measurement of reactions oc-
curring at the active sites of enzymes. The field of enzymology has shown
renewed growth due to excitement over the discoveries of new enzyme ac-
tivities, greater understanding of the evolution of enzyme catalysis through
enzyme families and superfamilies, and the application of this knowledge
to engineer new functions. This has been coupled with enhancements in
techniques for studying enzyme kinetics and structure, and the refinement
of advanced molecular dynamics simulations to link events occurring at
the molecular level to observable events. The rationale and techniques
described in this book complement these studies by providing methods for
definitive kinetic analysis to resolve reaction pathways.

Enzymes are dynamic, and a given crystal structure is only an approxi-
mation of reality in that it provides just one static view, which is influenced
by the conditions required to obtain crystals. Many questions are left unan-
swered. What are the roles of enzyme conformational dynamics in enzyme
activity and specificity? Are changes in structure coupled throughout the
protein? Does the substrate bind before or after the enzyme transitions
from an open to a closed state? How does the alignment of catalytic
residues bring about a chemical reaction? These are important mechanis-
tic questions that require accurate kinetic analysis.

We use the term “computer simulation”
as shorthand to mean numerical integra-
tion of rate equations, which is distin-
guished from analytical integration to de-
rive equations. Analytical integration re-
quires approximations to solve the math,
while numerical integration does not.

In this text, we strive to develop an intuitive and quantitative under-
standing of reaction kinetics, using a combination of equation-based analy-
sis and computer simulation to see patterns in data that reflect the under-
lying mechanism. By identifying these patterns, we can develop a testable
model and then fit data using numerical integration of the rate equations
to provide the most rigorous and comprehensive analysis possible without
simplifying approximations. We begin with simple reaction kinetics and
progress to more complex systems. Principles and intuition developed in
learning to understand the dynamics of simple systems are then applied to
aid in examining more complete, biologically or chemically relevant models.

Facing page: Sunrise over Rio de Janeiro.
This picture symbolizes the dawn of the
new enzymology

Kinetic analysis based on mathematical descriptions can appear rather
abstract, and courses dedicated to teaching kinetics often get bogged down
on math, consuming time that could be dedicated to teaching principles
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of kinetics. Therefore, throughout the text, we illustrate kinetic concepts
with tutorials using computer simulation to provide a visual link between
experimental observations, a proposed model, and a set of rate constants
and starting conditions. Patterns in data that suggest a model are also
revealed by traditional equation-based data fitting, but it is important to
understand the approximations used in deriving equations that critically
limit the utility of this traditional approach.

1.1 Importance of kinetic analysis

The field of kinetics is essential to understand biology and chemistry be-
cause the rates of reaction reveal the mechanism. Too often, investigators
propose a reaction mechanism based on equilibrium measurements or in-
spection of static structures. In doing so, they overlook a fundamental
tenet of thermodynamics: the net free energy change for a reaction is
independent of pathway. A corollary of this law is that equilibrium mea-
surements cannot define the sequence of reactions. Structures provide
a wonderful glimpse into the workings of proteins and nucleic acids, but
they represent the beginning, not the end, of investigations to determine
mechanism.

Figure 1.1 Conformational dynamics of
HIV reverse transcriptase. This figure
shows the structures of HIVRT (HIV re-
verse transcriptase) before (grey) and af-
ter (blue) nucleotide binding from molec-
ular dynamics simulations.118 These stud-
ies complemented kinetic analysis to es-
tablish that the conformational change
is a primary determinant of accuracy in
DNA replication catalyzed by HIV reverse
transcriptase.112 Reproduced with per-
mission from Kirmizialtin et al. (2012).118

Consider the structure of HIV reverse transcriptase (Figure 1.1), showing
the transition from open to closed states after the binding of a nucleoside
triphosphate. Observations of conformational changes after substrate bind-
ing are suggestive of models where a substrate-induced change in structure
aligns residues for e�cient catalysis of a specific reaction. However, the
role of induced-fit in enzyme specificity has been controversial since it was
first proposed in 1957,122 largely because of the vagueness of the model,
the lack of definitive kinetic data, and the inability of structural data to
establish a pathway.
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Structural studies alone cannot address the question because specificity
is a kinetic phenomenon. Recently, direct kinetic measurements of each
step in the reaction pathway resolved the controversy and established a
new paradigm for enzyme specificity in which the substrate-induced con-
formational change is the major determinant of enzyme specificity due to
kinetic partitioning of the closed state.112 Molecular Dynamics (MD) sim-
ulations complemented these studies to reveal the structural transitions
responsible for the observed kinetics and specificity.118 As described in de-
tail in Chapter 12, this example illustrates how simple and direct kinetic
measurements can provide definitive answers to long-standing questions—
a recurrent theme throughout this text.

This book provides the fundamental principles that guide the design and
interpretation of insightful experiments to explore the relationships between
structure, function, and dynamics. What characterizes an insightful exper-
iment? The right experiments: (1) dive straight to the heart of a scientific
question rather than dance around it, (2) can be interpreted rigorously to
provide new insights, and (3) provide a quantitative basis to distinguish
alternative theories. You should not choose to perform an easy experiment
if the results are unlikely to yield new insights. It is better to perform a dif-
ficult experiment that is easy to interpret and gives an unequivocal answer.
Here we strive to teach you to recognize, design, and rigorously interpret
the right experiments, and to analyze experimental observations globally
to define a unique, unifying model to account for all available data.

1.2 Computer simulation

In this book, computer simulation using KinTek Explorer software provides
the foundation for teaching kinetics and fitting data based on numerical
integration of rate equations.105 This software provides a means to help
develop an intuitive understanding of kinetics as well as a method for rig-
orously fitting data. We encoded in the design of this software the logic
behind designing experiments as a basis for modeling and rigorously in-
terpreting the results. The process of setting up an experiment in the
software mimics the protocols for experiments in the laboratory. KinTek
Explorer software provides a dry lab in which students can perform ex-
periments computationally and analyze results to test a chosen model; it
provides opportunities to practice both designing and interpreting experi-
ments without getting your hands dirty.

As a companion to this book, KinTek Explorer software can be down-
loaded at https://www.kintekexplorer.com and run in student mode with-
out a license. If your work involves collecting and analyzing kinetic and/or
equilibrium data, then you can purchase a license that enables you to input
data and export results in publication-quality format. On the website, you
can also find an instruction manual and numerous video tutorials to help
you get started. In this book, we do not spend much time on how to use
KinTek Explorer because that information is provided with the software.
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Rather, we concentrate on the principles behind the design of experiments
and data fitting based on numerical integration of the rate equations.

Most importantly, all-too-common errors of interpretation can be avoided
when data are fit using computer simulation because the program forces
you to specify the starting conditions, identify the signal being measured,
and account for the rate and amplitude of the reaction without making any
approximations. For example, Roger Goody71 has clearly described errors
in interpreting kinetics of GTPases and guanine nucleotide-exchange fac-
tors that are easily resolved by computer simulation using KinTek Explorer .
Conventional data fitting is focused on estimating the rate of the reaction
when fitting data using a simplified equation, while largely ignoring the
starting conditions for the experiment and the amplitudes of the reaction.

Figure 1.2 illustrates the concepts behind computer simulation based
on numerical integration of rate equations. We can easily enter a model
and a set of rate constants, then define an experiment by specifying the
starting concentrations of reactants and a mathematical description of the
observable signal. KinTek Explorer then displays the expected results.
In this example, we simulate a simple two-step reaction where enzyme
(E) binds substrate (S), and then the enzyme-substrate complex (ES)
isomerizes to a new state, (EX).

E + S k1��*)��k91
ES k2��*)��k92

EX

Figure 1.2 Numerical Integration. This
diagrams illustrates the two steps in sim-
ulating a reaction. 1. Starting with
a model, rate constants and concentra-
tions, numerical integration of the rate
equations yields the time-dependence of
each species. 2. The time dependence of
species is translated to an observable sig-
nal by a simple mathematical description.

To generate an output signal, we start with a model and a set of rate
constants and then define an experiment by specifying the initial concen-
trations of reactants. The program then uses numerical integration to
calculate the time dependence of each species. Next, the output signal
is calculated as a mathematical description, in this case, as a weighted
sum of species to mimic a fluorescence change. In fitting data, we take
an observable signal and find a model and parameters that reproduce the
data. This exercise reveals the relationships between observable signals,
the underlying models, and the details of a given experiment. In fitting
data, observable signals are interpreted to suggest a plausible model, which
we then enter into the software along with details of the experiment to test
whether the model and a set of parameters can reproduce the original data.

Alternative models can be considered to seek a minimal model, defined
as one that is necessary and su�cient to account for the observations. In
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order to eliminate overly complex models, we perform confidence contour
analysis, a process by which each parameter is varied systematically to
quantify the extent to which it is defined by the data.104 The simulation
software can also be used to help guide the design of new experiments to
distinguish alternative models.

1.2.1 Dynamic simulation

One unique feature of KinTek Explorer software is the use of dynamic
simulation, where the user can modify a rate constant, starting concentra-
tion, or output scaling factor by scrolling up and down with the computer
mouse while simultaneously observing the changes in predicted time- and
concentration-dependence of an observable output. This dynamic simu-
lation is useful for learning kinetics but also facilitates exploration of pa-
rameter space to find starting estimates of kinetic parameters for fitting
by nonlinear regression.

To illustrate the use of dynamic simulation, we consider a simple model
for binding substrate (S) to an enzyme (E):

E + S k1��*)��k91
ES

As described in more detail in Section 1.5 (page 26), rate constants k1
and k91 for the forward and reverse reactions, respectively, define the rate
of change in concentrations of the reactants and products. The rate of
formation of ES is given by the di�erence between the forward and reverse
rate, each of which is the product of the rate constants and concentrations.

d[ES]/dt = k1[E][S]� k91[ES]

We can expect the observed rate of formation of ES to increase in propor-
tion to the substrate concentration with a coe�cient defined by k1. We
will wait until Chapter 8 to derive equations for the time dependence of the
reaction, but it is easy to explore the relationships between rate constants
and the observable signal using computer simulation.

Figure 1.3 shows the simulation of this simple one-step binding reaction
at various concentrations of substrate monitored by a change in protein
fluorescence. Using KinTek Explorer software, you can open the example
file, Binding-onestep-example.mec, which can be found in the Examples
folder with the software. The model is based on a 30% increase in protein
fluorescence to provide a signal for substrate binding.

When running KinTek Explorer , if you click on a rate constant or con-
centration with the computer mouse, you can alter its value by dragging
the mouse up and down. As you do so, the computer rapidly recomputes
and displays the time course of the reaction so you can see the relation-
ships between these parameters and an observable signal. Note that the
exponential decay rate increases as a function of increasing concentration
of substrate, as evidenced by the shortening half-life. The forward and re-
verse rate constants can also be scrolled to see the change in shape of the
curves. Increasing the rate constant for the reverse reaction (k91) decreases
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the amplitude of the reaction by decreasing the equilibrium constant. In-
creasing the forward rate constant (k1) leads to an increase in the decay
rate and amplitude of the reaction. By simultaneously fitting the rates
and amplitudes of the reactions, both rate constants and the fluorescence
scaling factors can be defined.

Figure 1.3 Kinetics of substrate bind-
ing. Substrate binding to an enzyme was
simulated for a simple one step reaction
by mixing 1 µM enzyme with 1, 2, 5,
10 and 20 µM substrate. We modeled
a 30% increase in protein fluorescence on
substrate binding using the output func-
tion a ⇤ (E + b ⇤ ES), with a = 2.4 and
b = 1.3.

The purpose of this exercise is to help you to develop an intuitive under-
standing of how a given model and rate constants are revealed by the data,
and conversely, how data can be used to define a likely model. Greater
rate constants for the forward reaction, k1, lead to faster rates of increase
in fluorescence. Increasing the rate constant for the reverse reaction, k91,
decreases the amplitude and therefore decreases the half-time of the ap-
proach to equilibrium. In a sense, the reaction does not have as far to go,
so it reaches the endpoint in less time. This phenomenon is discussed in
detail in Chapter 8. For now, this example serves only as an illustration of
things to come.

Dynamic simulation is used throughout the book to illustrate the rela-
tionships between rate constants, starting concentrations, output scaling
factors, and observable signals. In subsequent chapters we will explore
these relationships mathematically. However, the use of dynamic simula-
tion gives you a kind of biofeedback where a given action—a change in rate
constant, starting concentration or scaling factor—yields an immediate re-
sponse visible through changes in the output signal. Through repetition,
this exercise helps to cultivate an intuitive understanding of how mecha-
nisms are revealed through patterns in the kinetic data. Ultimately, the
goal of kinetic analysis is to deduce a model based on analysis of data, but
we begin by going in the opposite direction. Once we understand how a
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given model generates predictable patterns in data, we can then propose
a plausible model based on inspection of the data.

1.3 Information content of kinetic data

Here we introduce the concept of the information content of kinetic data,
which we define as the maximum amount of mechanistic information that
can be extracted from a given data set. Understanding the information
content that can be obtained from a given experiment is important since
it sets the boundaries of expectations for what can be learned from one
experiment and what additional experiments may be needed to address
unanswered questions. Trying to extract more information than can be
supported by the data results in frustration and possible embarrassment.
On the other hand, failing to recognize the full extent of information avail-
able from a data set leads to wasted time and resources.

Major goals of this book are to teach you to understand the information
content of a given experiment and to teach you how multiple experiments
can come together to answer questions that cannot be addressed by any
single experiment. Developing an intuitive understanding of the informa-
tion content of an experiment can be achieved through two intertwined ap-
proaches. First, for simple systems the derivation of equations can readily
reveal the information content of an experiment in terms of the maximum
number of parameters that can be defined in fitting the data using the
appropriate equation. For example, because steady-state kinetic data can
be reduced to an equation defined by a straight line on a double-reciprocal
plot (see Section 5.4.3, page 159), it is indisputable that the data can be
represented by only two parameters. The intercept and slope of the plot
give 1/kcat and 1/(kcat /Km), respectively.

Equations cannot be solved for more complex systems, and even rela-
tively simple systems require significant approximations to derive the equa-
tions. In fitting data, each experiment requires a di�erent set of equations
(see ahead, Figure 1.10, page 37), which makes it di�cult, if not im-
possible, to fit multiple experiments simultaneously. Accordingly, we use
computer simulation to model and fit the data. Dynamic simulation pro-
vides initial assessment of the extent to which individual rate constants
may be constrained, and therefore defined, by the data. After achieving a
good fit to the data, confidence contour analysis defines the information
content of a given data set to quantify whether the model and all of the
parameters are supported by the data.

The information content depends on the underlying mechanism, intrin-
sic rate constants, and details of the experimental design. One of the dif-
ficulties of kinetic analysis is that a given experiment may have a di�erent
information content for the same model depending on the underlying rate
constants. Computer simulation assists in resolving these complexities.
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1.4 The role of models in biochemistry

Ever since Copernicus developed mathematical models that could be used
to predict the motions of the stars and planets,44 science has progressed
through careful observation interpreted with the use of mathematical mod-
els. These models for the basis for predictions that can be tested using more
accurate measurements and new techniques. The year 2013 marked the
100th anniversary of publication of the classic Michaelis-Menten paper,153

which provided the first evidence for the existence of an enzyme-substrate
complex formed during catalysis. Recently, the author and Roger Goody
published a complete English translation of the Michaelis-Menten paper
(published in German), and o�ered insight into the important scientific
questions and analysis methods of the day.103

Michaelis and Menten defined kinetic parameters for a minimal enzyme
pathway for the hydrolysis of sucrose to form fructose and glucose catalyzed
by the enzyme invertase (Figure 1.4), so named for the inversion of the
optical rotation that provided a signal to measure the rate of reaction.

Figure 1.4 Structure of invertase. The
structure of invertase was published
100 years after the landmark Michaelis-
Menten paper. Drawn using Pymol by
alignment of PDB ID:4EQV181 with the
substrate from PDB ID:2AEZ.214

Through kinetic analysis, Michaelis and Menten successfully addressed
the pressing enzymology question of their time: can the observed rates
of catalysis be explained by a model in which the rate is proportional
to the concentration of a theoretical enzyme-substrate complex? Their
simple model made the prediction that the substrate (S) binds in a rapid
equilibrium with the enzyme, which then catalyzes the reaction and releases
the products, fructose (F) and glucose (G).

E + S k1��*)��k91
ES k2��! E + G + F

v =
Vmax [E][S]
Km + [S]

Vmax = kcat [E]

(1.1)

1.4.1 Lessons from Michaelis and Menten

The Michaelis-Menten model illustrates the general importance and prop-
erties of mathematical models that apply to research today.95 The im-
portant question for Michaelis and Menten was whether the rate of the
enzyme-catalyzed reaction was proportional to the concentration of enzyme-
substrate complex predicted by a simple substrate-binding model. Michaelis
and Menten raised the standard of proof even higher by insisting that the
model account for the full progress of the reaction to completion, not just
the initial velocity.153,103

The Michaelis-Menten paper illustrates the important roles that models
play in understanding biology and chemistry:

1. The analysis provided evidence for the existence of something that could
not be seen! The nature of enzymes was not known at the time, and
consequently, the concentration of an enzyme could not be determined.
Nonetheless, the data and mathematical analysis provided evidence that
the enzyme-substrate complex must exist, because the rate measure-
ments over a range of starting concentrations and reaction times could
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be explained based on a simple model used to calculate the concen-
tration of the enzyme-substrate complex. Moreover, Km, the Michaelis
constant, so named by subsequent authors, provided an estimate of
enzyme-substrate binding a�nity. We now know that the Michaelis
constant does not equate to substrate binding a�nity, but their dis-
covery seeded the century of studies that followed to more accurately
establish the kinetic and thermodynamic basis for catalysis.

2. Importance of quantitative analysis! Michaelis and Menten derived
equations for product inhibition and used initial velocity methods to
measure Ki values for the fructose and glucose. In the final test of
their model, they included product inhibition in their analysis of the
full reaction time course. This provided the most stringent test of the
postulate that the rate of reaction was proportional to the concentra-
tion of a hypothetical ES complex.153,103 A hundred years later, analysis
of Michaelis and Menten’s data using computer simulation methods re-
veals that it would not be possible to account for the full progress curves
without including the e�ects of product inhibition. Although this is not
explicitly stated in their paper, it is likely that their first attempts failed
to achieve a satisfactory fit, and they then realized that the deviation of
the curves reflect product inhibition. By including product inhibition in
their comprehensive model, the global constant (Vmax/Km) derived by
Michaelis and Menten is identical to the value derived today by globally
fitting their data using computer simulation. This is a testament to
their care and diligence in fitting data using only a pencil and paper! It
also illustrates the importance of accurate, quantitative analysis to test
a proposed model.

3. Testing the model required attention to experimental details! In earlier
work, Henri82 had attempted to test the same model, but he neglected
to control for variations in pH and failed to account for the slow mu-
tarotation of glucose (equilibration of the α and β anomers). Thus,
his data were too inaccurate to support the proposed model. Michaelis
and Menten controlled pH with an acetate bu�er and stopped the re-
action with alkali to increase the rate of mutarotation before making
measurements. By understanding the chemistry, Michaelis and Menten
minimized uncertainties in the experimental setup to a�ord a more ac-
curate test of the model.

4. The model is an approximation of reality! E�ective models contain the
minimal number of features to account for available data. For example,
Michaelis and Menten knew that pH was important, but pH does not
appear anywhere in their model. More importantly, the chemical con-
version of substrates to form products at the active site of the enzyme
is a necessary step that is omitted from the model, largely because the
data could not define the rate of reaction at the active site so the simpler
model was su�cient. Finally, the reaction was written with irreversible
product release, even though it was known that the products of the re-
action could rebind to the enzyme. Thus, the model was simplified to a
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level that could be supported by the initial velocity data, and therefore,
its development clarified the then-current state of knowledge.

5. The model informs us how to better perform the experiments! The
model stated that the rate of turnover would change as a function of
time as the substrate was depleted and products accumulated to inhibit
the enzyme. But it also implied that in the initial phases of the reaction,
there would be a brief period during which the substrate concentration
was largely invariant. Thus, initial velocity measurements based on a
separation of time scales allowed focus on a phase of the reaction during
which a simplified measurement could provide meaningful results. The
simplified data analysis relied on these critical approximations: product
release is irreversible, and [S] does not change significantly during the
initial phase of the rate measurement. This keen observation formed
the foundation of enzyme kinetic methods for much of the century that
followed their publication.

6. The model drives the development of new methods to test predictions!
The most important aspect of a model is that it makes predictions that
can be tested through new quantitative measurements. Thirty years
after the Michaelis-Menten paper, Britton Chance performed the first
stopped-flow experiments to directly observe the formation and decay
of an enzyme-bound intermediate using an optical signal observed with
horseradish peroxidase. Thus direct measurement of an enzyme-bound
species confirmed the Michaelis-Menten model.33

It is important to recognize that models represent approximations to
reality and to acknowledge the role that those approximations play. A
model should only be as complex as the data can support. Thus, in fitting
data, an important requirement is that it is based on a minimal model
su�cient to account for the data. As additional data are included, the
model can then be expanded to include the new information.

As we increase the sophistication of measurements and the power of
computer-based modeling, we can generate models of increasing complex-
ity and fit multiple experimental data sets to a single, unifying model. Now
the challenge is to ensure that the model represents the minimal number
of steps and intermediates required to account for all available data and
preclude over-interpretation. In the pages that follow, we provide an in-
tuitive visual guide to assess the quality of data fitting, define the extent
to which parameters are constrained by the data, and ultimately evaluate
whether the data support or refute a given model.

1.5 Conventions regarding rate constants

First, we introduce the fundamental concepts of kinetics and nomenclature
illustrated by the simple enzyme pathway shown below, with one substrate,
one intermediate (EX), and one product. This approach can be easily
expanded to include enzymes with multiple substrates and products or
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applied to chemical kinetics without enzymes.

E + S k1��*)��k91
ES k2��*)��k92

EX k3��*)��k93
EP k4��*)��k94

E + P (1.2)

Note that in fitting data, we seek a mini-
mal model su�cient to account for avail-
able data so each rate constant defines a
kinetically significant step in the reaction.
A given kinetic step could be a function of
several microscopic steps. For example, if
k3 � k2 and k92 � k93, then the inter-
mediate, EX , breaks down faster than it
is formed in each direction, and it will not
be observed. In this case, which is com-
mon in enzymology, the scheme collapses
to a minimal pathway that omits EX even
when you know it must exist chemically.

Rate constants are designated by a lowercase kn, where the n is the nth

step in the pathway, with a positive integer for the forward reaction and
a negative integer for the reverse. Equilibrium constants (Ka or Kd) and
Michaelis constants (Km) are defined by a ratio of rate constants and are
designated by an uppercase K . In this example, there are six first-order
rate constants (black) and two second-order rate constants (red).

First-order rate constants involve the reaction of a single species and
have units of s91. For example for the simple model:

For: ES k91��! E + S the velocity is d[ES]
dt = �k91[ES]

Second-order rate constants involve the collision of two species and
have units of M91s91.

For: E + S k1��! ES the velocity is d[ES]
dt = k1[E][S]

It is convenient to use µM91s91 or sometimes nM91s91, depending on the
concentration scale of your data. Second-order rate constants are limited
by di�usion to less be than ⇠ 109M91s91 = 1000 µM91s91 = 1 nM91s91.

Rate constants are essentially coe�cients that define the linear rela-
tionship between the rate of reaction and concentrations of reactants. For
example:

k1 =
d[ES]/dt
[E][S] Units of: µM/s

(µM)(µM)
= µM91s91

Pseudo-first-order rate constants include the concentration of one species
in a bimolecular reaction and have units of s91; this simplification is valid
only when one species is in excess over the other. For example, when the
starting concentration of [S]0 � [E]0, we make the approximation that the
concentration of S is constant so E decays with a pseudo-first-order rate
constant given by k1[S].

E k1[S]��! ES so that d[ES]/dt = k1[S][E]

This is a critical approximation that is needed to solve di�erential equa-
tions describing the reactions as described in Eqn 8.2 on page 224. In
Chapter 2 we show that this limitation is overcome by the use of computer
simulation based on numerical integration of the rate equations. However,
in fitting data using equations, the concentration of substrate must be at
least fivefold greater than the concentration of enzyme. Experiments can
also be performed with enzyme in excess over substrate so the substrate
decays at a rate governed by k1[E] as described in Section 11.1 (page 318).

Finally, the net rate of change in the concentration of ES is the di�er-
ence between the forward and reverse rates.

The model: E + S k1��*)��k91
ES gives d[ES]/dt = k1[E][S]� k91[ES]
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1.5.1 Initial velocity versus eigenvalue

As we describe in more detail in Chapter 8, the time dependence of dis-
appearance of free enzyme follows a single exponential as illustrated in
Figure 1.5, provided that the concentration of substrate is in su�cient
excess over the enzyme.

E + S k1��*)��k91
ES

[E] = ([E]0 � [E]1) · e9λt + [E]1

λ = k1[S] + k91

(1.3)

where [E]0 and [E]1 are the concentrations of enzyme at time zero and in
the approach to infinity, respectively, and λ is the parameter that governs
the time dependence of the exponential decay and is termed the “eigen-
value.” Note, λ is not a rate constant; rather, it is a function of two rate
constants and a concentration, in this example. We will also refer to the
eigenvalue as the exponential “decay rate” because it describes the decay
of E over time, analogous to radioactive decay.

Kinetic measurements are based on monitoring the change in concentra-
tion of a reactant, intermediate, or product as a function of time. Signals
are provided by direct measurement of the concentration, or by absorbance
or fluorescence. In any case, one wants to obtain a measure of the rate of
change of individual species as part of studies to establish the underlying
mechanism.

There are two methods for measuring the speed of a reaction, either as
an initial velocity—a slope giving units of concentration/time—or as a fit
to an exponential function (Eqn 1.3) to give the eigenvalue (λ) which has
units of 1/time, as shown in Figure 1.5.

Figure 1.5 Measuring the rate of a re-
action. This figure shows the exponen-
tial decay of free enzyme upon binding
substrate. The data were simulated with
0.1 µM enzyme, 20 µM substrate and
with a second-order rate constant, k1 =
2 µM91s91 and a reverse rate constant of
k91 = 10 s91.

E + S 2 µM91s91������*)������
10 s91

ES

Fitting the data in Figure 1.5 to a single exponential function (Eqn 1.3)
yields an observed decay rate (eigenvalue) of 50 s91, which is defined by the
product of the forward rate constant times the substrate concentration plus
the rate constant for the reverse reaction. This process of data fitting yields
the lifetime (1/λ) of free enzyme at a particular substrate concentration
and is independent of the starting enzyme concentration. λ = k1[S] + k91 =
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50 s91 In contrast, fitting to derive the initial rate (extrapolated to time
zero) yields a slope with units of concentration/time. The measured value
depends on the rate constant, k1, and the initial concentrations of substrate
and enzyme: initial velocity = d[E]/dt = �k1[E]0[S]0 = 4 µMs91

You can use either initial velocity or exponential fits to measure how
fast the reaction proceeds, but there are major di�erences:

• Fitting to an exponential function includes more data, provides a more
accurate assessment of the model, and a�ords more precision in es-
timating the rate constants. Fitting data to derive initial velocities is
error-prone because of the restricted time interval and smaller amplitude
of change in signal.

• In this example, the eigenvalue is a function of the sum of the forward
and reverse rate constants and the concentration of the species in excess,
S in this case, λ = k1[S] + k91. In general, the eigenvalue is a complex
function of all of the rate constants contributing to the final endpoint,
but does not depend on [E] when [S] is in excess.

• The initial velocity is a function of the product of the forward rate
constant and concentrations of the two reactants at the time of the
measurement; for example, d[E]/dt = �k1[E]0[S]0.

• Initial velocity measurements include y-axis scaling factors and [E]. For
example, the initial slope of a fluorescence signal will have units of
fluorescence/time. In contrast, in fitting to an exponential function,
the y-axis scaling factors are isolated in the amplitude terms and do not
a�ect the decay rate estimate.

1.5.2 Rate constant or eigenvalue?

Confusion arises in the nomenclature often applied to the results of fitting
data to an exponential function. In the early days of enzymology, the term
rate was defined to describe a change in concentration over time as the
initial velocity, d[P]/dt. When data were fit to an exponential function,
the exponential term was called a rate constant. While the “rate” changes
as reactants are depleted, the “rate constant” does not. However, use
of “rate constant” to described an eigenvalue is a major mistake because
“rate constant” is more stringently defined to represent a single step in a
pathway. A fit to an exponential function yields a value that is most often
a complex function of intrinsic rate constants. Therefore, it is inaccurate
and misleading to call an eigenvalue a rate constant.

In order to avoid confusion, the term rate constant must be reserved to
refer only to a single reaction step in a pathway as described by a lowercase
k over an arrow: A

k��! B.
Unfortunately, some investigators still espouse the use of the term rate

constant for the value derived from an exponential fit (units of 1/time) to
distinguish it from a rate measured as product formed versus time (units
of signal change over time) only because of historical use.14 Because of the
widespread misuse of the term rate constant to represent an observed decay
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rate derived by fitting to an exponential function, we give two examples of
the confusion it generates.

We have already discussed the simple model involving the reversible
binding of substrate to an enzyme as illustrated in Figure 1.5.

E + S k1��*)��k91
ES

[E] = ([E]0 � [E]1) · e9λt + [E]1

λ = k1[S] + k91
(1.4)

The observed eigenvalue, λ = k1[S] + k91, is certainly NOT a rate constant.
In fact, it is not even a constant because it is a function of substrate
concentration. This illustration is for the simplest pathway. As pathways
expand, the eigenvalue gets far more complicated, and the confusion in
misusing the term rate constant to describe an eigenvalue gets worse.

Consider a pre-steady-state burst experiment using the following simple
model, which is described in Chapter 10.

E + S k1��*)��k91
ES k2��*)��k92

EP k3��! E + P

The time dependence of product formation follows a single exponential
followed by a linear phase, leading to steady-state turnover at a rate kss.

[P]obs
[E]0

=
[EP] + [P]

[E]0
= A0(1� e9λt) + ksst

If we make the simplifying approximation that substrate binding is a rapid
equilibrium, then the observed decay rate (eigenvalue) is defined by:

λ =
K1[S]

1+ K1[S]
k2 + k92 + k3

Clearly, λ is not a rate constant! The very real confusion comes with
the statement that “fitting the pre-steady-state burst to an exponential
function defines the observed rate constant for the chemical reaction at
the active site.” It does not! It defines the eigenvalue: the exponent is
a function of all of the rate constants in the pathway, including product
release and the reverse of the chemistry step!

Another example is a simple two-step binding reaction where the data
follow a double exponential function with two eigenvalues (see Section 9.3,
page 278).

E + S k1��*)��k91
ES k2��*)��k92

EX

Y = A1 + A1 · e9λ1·t + A2 · e9λ2·t

The two eigenvalues are derived from the roots of a quadratic equation:

λ1,2 =
(k1[S] + k91 + k2 + k92)±

q
(k1[S] + k91 + k2 + k92)2 � 4 · (k1[S] · (k2 + k92) + k91k92)

2

The complexity of the problem is obviously underestimated by a description
of the two eigenvalues as “observed rate constants”—and this is for a
reaction involving only two steps!



introduction to kinetics 31

1.5.3 Do not use “observed rate constant”

Using the term observed rate constant to describe an eigenvalue is akin to
describing the Michaelis constant as a measure of the apparent substrate
binding a�nity. In the minds of students and too many research scientists,
that statement gets truncated into the belief that the Michaelis constant
is a measure of substrate binding a�nity—never mind the important qual-
ifying adjective, “apparent.” Using the term “observed rate constant” is
even worse since the qualifying adjective “observed” is even weaker than
“apparent” in raising a flag of caution for interpretation of the measured
parameter. After all, are not all measured values “observed” parameters?

Learning kinetics is hard enough without the confusion of dual meanings
of the term rate constant, which seems to be applied to eigenvalues only
because of historical precedence. Now is the time to change this mistake.
Continued use of the term observed rate constant to refer to an eigenvalue
blurs important distinctions that must be maintained. Eigenvalues are de-
pendent on the conditions of the experimental setup, including concentra-
tions of reactants and products and the methods of measurement. This
alone should be su�cient reason to discard this outdated nomenclature.

The distinction between an eigenvalue and a rate constant is increas-
ingly important as we consider di�erent methods of fitting data. Conven-
tional fitting using equations yields net decay rates or eigenvalues, which
must then be interpreted to define the underlying rate constants, often re-
quiring inclusion of amplitude information and/or substrate concentration
dependence of observed rates. More importantly, modern methods of data
fitting based on computer simulation directly yield individual rate constants
defined by a given model. So it is all the more important to understand that
fitting data based on an equation does not yield a rate constant, except
in rare circumstances of irreversible reactions, as described on page 264.

1.5.4 Use of the word “rate”

In this book we insist on a standard where the term “rate constant” is
reserved used to refer only to the rate coe�cient for a single step in a
reaction pathway. So we are left with a problem of semantics. How should
we refer to the speed of a reaction when it is measured by fitting data to
an exponential function as in Figure 1.5? If we reserve the word “rate”
to only refer to a measurement of velocity as in d[P]/dt, and we cannot
use the term “observed rate constant”, then we are left with awkward
sentence structure in referring to the parameter derived in fitting data to an
exponential function. For example, Cornish-Bowden proposed adopting the
phrase “frequency constant,”45 which has not been widely used. Perhaps
“decay constant” would be a better alternative.

Word usage evolves in response to environmental changes as certainly as
do Darwin’s finches on the Galapagos Islands.218 Enzymology has advanced
from a reliance on initial velocity measurements to a growing recognition of
the importance of transient-state kinetic methods where the speed of the
reaction is measured by fitting to an exponential function. We are now in
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an era where data fitting based on simulation a�ords rate constants directly,
not eigenvalues or initial velocities. The word “rate” has been increasingly
used generically to refer to the speed of a reaction independent of how it
was measured, not because of ignorance,14 but out of a desire to concisely
describe the speed of a reaction. When having to choose between the
dichotomy over the use of the word “rate” versus confusion over the use
of the term “observed rate constant,” the latter is rejected because it is
the most misleading descriptor of information content.

1.5.5 The new standard

In this book, we focus on methods that yield true rate constants directly
in the process of data fitting by simulation. This is a big step forward from
traditional equation-based data fitting, which yields eigenvalues that are a
function of multiple rate constants and concentrations. For that reason, it
is important to make the clear distinction that an observed decay rate is
not a rate constant. We adopt the following conventions:

• Rate constant is a term strictly reserved to refer to a single reaction step
as defined by a lowercase k over an arrow in a pathway, E+S k1���! ES.
It must not be used in any other context. In reading the literature,
beware of the use of the term “observed rate constant” and carefully
interpret the intended meaning in context. Are the authors referring to
a rate constant or an eigenvalue?

• Rate or velocity refers to a change in concentration with time such as
in an initial velocity measurement of product formation; for example,
v = d[P]/dt = k4[EP] for Scheme 1.2.

• Rate is also used generically to refer to the speed of a reaction inde-
pendent of how it was measured whenever it is not necessary to make
the distinction of how the reaction was measured. Take care not to use
“rate” when you mean “rate constant,” the latter being more specific
and informative. More importantly, do not use the phrase “observed
rate constant” when you mean “eigenvalue.”

• We specifically use the term eigenvalue or decay rate when it is necessary
to emphasize that a reaction rate estimate was derived by fitting to an
exponential function, such as: [E]/[E]0 = e�λt . The symbol λ is used
in equations to designate the eigenvalue.

• In addition to eigenvalue or decay rate, two other terms are mathemat-
ically defined based on the eigenvalue:

The lifetime is defined by τ (tau) = 1/λ.

The half-time is defined by t1/2 = ln(2)/λ.

1.6 Three timescales of enzyme catalysis

Experiments performed using di�erent enzyme concentrations and di�er-
ent timescales yield very di�erent information. To illustrate this, we use
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the computer simulation software to generate synthetic data that mim-
ics experiments performed under di�erent conditions based on the model
shown in Scheme 1.5. At this point, it is not expected that a beginning
student fully understands all of the details given here. This section pro-
vides a preview of where we are headed and is intended only to illustrate
the numerous approaches that we expand on in subsequent chapters.

The following model and rate constants were used to generate data un-
der various conditions and timescales to illustrate the types of experiments
that can be performed, as shown in Figure 1.6.

E + S 10 µM91s91�������*)������
500 s91

ES 150 s91����*)����
20 s91

EP 5 s91�������*)��������
0.02 µM91s91

E + P (1.5)

Figure 1.6 Three timescales of enzyme
catalysis. A. Steady-state turnover mea-
sured at low enzyme concentration over a
10 min timescale. B. Full progress curves
at a slightly higher enzyme concentration
and longer time. C. Transient-state ki-
netics using a high enzyme concentration
and 10 ms timescale.

Figure 1.6A: Steady-state kinetics are measured at a low concentration of
enzyme (0.001 µM) and several concentrations of substrate (1-100 µM).
Measurement of the concentration dependence of the initial rate a�ords
estimates of kcat and Km.

Figure 1.6B: Following the reaction to completion (with 0.05 µM enzyme
and 20, 50, 100 µM substrate) also provides estimates of kcat and Km,
but the data need to be fit by simulation and can also define product
inhibition.

Figure 1.6C: Using higher enzyme concentrations (1 µM enzyme with 50
µM substrate) and shorter times provides data to define the reactions
occurring at the enzyme active site in the approach to the steady state.
The only di�erences in the three experiments are in the starting concen-

trations of reactants, the nature of the observable signal, and the timescale
for observation. Of course, they also yield very di�erent information.

1.6.1 Steady-state kinetics

For decades, the study of enzyme kinetics has been dominated by steady-
state methods using relatively low enzyme concentrations. Under these
conditions, the concentrations of the ES and EP complexes are approxi-
mately constant over a time interval su�cient to measure the initial veloc-
ity. Measurements as a function of substrate concentration allow determi-
nation of the net enzyme turnover rates (kcat) and Michaelis constant (Km)
as first described by Michaelis and Menten in 1913.153 Note in Figure 1.7
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that the initial slope of the time course increases and approaches a maxi-
mum rate as the concentration of substrate increases. The maximum rate
defines kcat , while the concentration dependence defines Km. In Chapter 5
we explain the meaning of steady-state kinetic parameters. The KinTek
Explorer mechanism file, Steady-state.mec, used to create these figures is
available in the Examples subfolder with the software.

Figure 1.7 Steady-state turnover. En-
zyme turnover was simulated using 0.01
µM enzyme and various concentrations of
substrate (1, 2, 5, 10, 20, 50, 100 and
200 µM). These data can be viewed and
fit in the KinTek Explorer example file:
Steady-state.mec, found in the Examples
subfolder with the software.

Note the curvature in the traces at lower substrate concentration (Fig-
ure 1.7), so we have to restrict data fitting to shorter time intervals to
accurately measure the initial velocity. This constitutes a major limitation
of the steady-state method due to inaccuracies at the lowest substrate
concentrations. In Chapters 2 and 5 we show how the raw data from a
steady-state experiment can be fit directly using computer simulation, by-
passing the conventional initial velocity estimates and secondary plots of
rate versus concentration to fit the rate data to a hyperbola to determine
kcat and Km. Fitting by simulation bypasses the steady-state approximation
and directly provides realistic standard error estimates for the steady-state
kinetic parameters, as described in Section 2.5 (page 56).

1.6.2 Full progress curve kinetics

In full time course or progress curve kinetics (Figure 1.8), the reaction is
followed to completion, approaching equilibrium as the substrate is con-
verted to product. In the absence of product inhibition, one trace is su�-
cient to define kcat and kcat /Km. This is because the decrease in velocity as
substrate is depleted allows determination of the substrate concentration
dependence of the rate of turnover. Thus, one time course contains as
much information as the concentration series shown in Figure 1.7. More-
over, if the reaction is inhibited by the rebinding of product, the shape
of the curve is altered toward the end of the reaction, and this provides
additional information to define the binding a�nity for the product. In
this case, the experiment must be performed at several starting concen-
trations of substrate to sort out the e�ects of decreasing substrate from
the e�ects of increasing product concentration on the rate of reaction as
it approaches the endpoint. In abandoning the traditional initial velocity
methods and using computer simulation for data fitting, full progress curve



introduction to kinetics 35

Figure 1.8 Full progress curve kinetics.
Enzyme turnover was followed to comple-
tion using 0.1 µM enzyme with 1, 2, and 3
mM substrate, as described in Progress-
curvesB.mec

kinetics analysis provides much more information from fewer experiments
with less wasted resources. The analysis is simpler, more direct, and pro-
duces more accurate results than traditional initial velocity methods, as
described in Section 5.7 (page 170).

1.6.3 Pre-steady-state transient kinetics

The information content of steady-state and full progress curve kinetics
is limited because the studies involve multiple enzyme cycles. In order to
obtain information pertaining to the reactions occurring at the active site
of the enzyme, it is necessary to observe reactions on the timescale of a
single enzyme turnover as described in Chapters 7 to 12. Transient kinet-
ics (Figure 1.6C) allow observation of the rates of substrate binding and
the chemical reaction at the active site as well as the direct observation
of enzyme intermediates. Note the rise and fall of the ES complex, co-
incident with the formation of the enzyme-bound product (EP). Various
signals are employed to measure the reaction on this timescale. In a rapid-
quench-flow experiment, the sum of product bound to the enzyme and
free in solution is measured (EP + P), as illustrated in Figures 1.10F. For
example, you can also monitor the time course of substrate binding using
fluorescence methods (Figure 1.10D). Unlike steady-state kinetic analysis,
where one tests various models to see which one fits the data, transient ki-
netic studies a�ord construction of a reaction pathway by putting together
measurements of individual segments. For these reasons, much of this
book is devoted to the use of transient-state kinetic methods. Moreover,
based on the expanded knowledge derived from observing reactions occur-
ring at the active site, we carefully consider the meaning of steady-state
kinetic parameters in Chapter 5.

1.7 Data fitting—equations versus simulation

In fitting three experiments shown in Figure 1.6 using traditional meth-
ods, a di�erent set of equations would be needed for each experiment,
and each equation is based on approximations needed to solve the math,
although there are no general equations for fitting full progress curve ki-
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netics without significant approximations. In contrast, to fit each of these
experiments based on numerical integration of the rate equations (com-
puter simulation), the only things that di�er for each experiment are the
starting concentrations of the reactants and the definition of the output
observables. Thus, all three experiments can easily be fit without concern
over choosing the right equation, and they can be fit simultaneously using
a single unifying model without approximations, if the model is su�cient.
If the model is wrong, it can easily be modified. If the model gives a good
fit, it is su�cient to account for the data. We can then use this model
with computer simulation to design new experiments to further test the
model.

Throughout the text, we focus on developing an understanding of the
principles of kinetics and how they are applied to design informative exper-
iments, and we interpret them rigorously based on computer simulation.
When fitting various experiments using computer simulation, each exper-
iment is based on the same model but with di�erent experimental details
and output functions, as summarized schematically in Figure 1.9.

Figure 1.9 Fitting data from multiple
experiments with a single model. This
diagram illustrates the organizational hi-
erarchy in KinTek Explorer . A single
model is referenced in fitting multiple ex-
periments which di�er only in their start-
ing concentrations, timescale of measure-
ment, and output observable function.
Experiments can include time-dependent
reactions, equilibrium titrations, time-
resolved spectra and other protocols.

This facilitates global data fitting. Figure 1.10 illustrates several exam-
ples of fitting data using equations, in contrast to fitting by simulation.
The traditional process of data fitting involves deriving equations from a
given model, then fitting the time dependence of the reaction to extract
observed decay rates (eigenvalues) that reflect the underlying rate con-
stants.102 In a second step, the concentration dependence of the observed
rates can be analyzed in a secondary plot. Thus, attempts to extract
the primary kinetic parameters require application of yet another equation
derived from the model.

As described in Chapter 5, steady-state data (Figure 1.10A) are first fit
to a straight line to estimate the initial velocity, which is then plotted versus
substrate concentration (Figure 1.10B) and fit to a hyperbola to get Vmax

and Km. In this example, we then need to divide Vmax by the extinction
coe�cient and enzyme concentration to get kcat . Alternatively, we can
fit data globally by simulation by simply entering the model, the starting
concentrations of enzyme and substrate, and a mathematical description
of what is being measured–in this case, absorbance due to the product
with a known extinction coe�cient (ε).
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Figure 1.10 Fitting data using equations versus by simulation. On the left side we show examples data and the equations needed to
fit each experiment. In the righthand column we show the setup to fit the data by simulation, without approximations and without
concerns over choosing the right equation. To fit data by simulation, you only need a model, a set of starting concentrations, and a
definition of what is being measured—then all experiments can be fit simultaneously.

In globally fitting data by simulation, we use a model to derive sets of
rate constants based on numerical integration of rate equations (computer
simulation), bypassing the tedious and error-prone approximations needed
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to derive equations and fit data to arbitrary constants. Moreover, experi-
ments are simulated exactly as performed, including the starting conditions,
so that errors in interpretation are avoided.

Serious mistakes often result from using the wrong equation. For exam-
ple, in Figure 1.10C, an equilibrium titration should be fit using a quadratic
equation; use of a hyperbola gives the wrong answer, often by orders of
magnitude, as explained in Chapter 3. Fitting the time dependence of a
fluorescence change, shown in Figure 1.10D, first requires fitting by using
a single exponential function (Chapter 8). The observed rate is then plot-
ted versus substrate concentration and fit to a hyperbola to estimate the
rate constants (Figure 1.10E). Often the data require a double exponential
function, leading to more complex and error-prone analysis. Finally, a sim-
ple pre-steady-state burst experiment (Chapter 10) shown in Figure 1.10F
can be fit to an exponential plus a linear phase, but the equations for the
amplitude and rate are complex functions of intrinsic rate constants. In
each of these cases, fitting by simulation can be accomplished simply by
entering the model, starting concentrations of reactants, and a mathemat-
ical definition of what is being measured. Because of this simplicity, all
of these experiments can be fit simultaneously by simulation based on a
single unifying model.

Although we no longer rely on equations for rigorous data fitting, it is
still important to understand the derivations of equations for simple reac-
tion kinetics. The equations and concentration dependence of observed
rates reveal the underlying mechanisms, which can then be entered into
simulation software for more rigorous fitting. In addition, understanding
the equations underlying the reaction kinetics helps to define the informa-
tion content of the data and the conditions for performing each experi-
ment. For example, Michaelis and Menten recognized that steady-state
initial velocity measurements can be used to define the kinetics of enzyme
catalysis even though their ultimate goal was to account for the full time
course.153,103 Moreover, understanding the underlying kinetics helps to de-
sign more direct measurements on a shorter time scale. Increasing the
enzyme concentration and shortening the time scale of observation brings
us into the realm of pre-steady-state kinetics, allowing observation of the
reactions occurring at the active site of the enzyme, but the design of these
experiments requires a knowledge of kcat and Km values. In each case the
derivation of equations helps to define the conditions for the measurement,
and analysis of the concentration dependence of the observable rates helps
to suggest the reaction pathway. With this information in hand, the data
can then be fit based on computer simulation to obtain the most accu-
rate fit to the data. The use of equations in data fitting as a prelude to
full simulation-based global data fitting is clearer in the context of more
complex models, as described in Chapter 9.

Throughout this book, and especially in the latter chapters, we illus-
trate the successful application of global data fitting methods to di�erent
enzymes. This is based on the belief that teaching is more e�ective when
abstract theory is applied to real-life examples. In many cases, the exam-
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ples are taken from the author’s research, where his firsthand experience
a�ords insights into the challenges in solving the mechanism of a new en-
zyme. Each example illustrates that globally fitting data by simulation is
far superior to traditional data fitting methods using equations. Not only
is global fitting more accurate; often we see that the whole is greater than
the sum of the parts. In fitting multiple experiments globally, we extract
more information from the data than can be obtained by the piecemeal
fitting of individual experiments to di�erent equations.

1.8 Summary

Here we provide an introduction to kinetics, the definition of rate con-
stants according to a model, and the means to define a mechanism based
on measurements of the rate of reaction under a variety of conditions.
This chapter serves as an overview of things to come so that as we dive
deeper into the kinetics of individual reactions and di�erent methods of
measurement, you can keep in perspective why we are making a given mea-
surement, where we are going, and how it all fits together. Our ultimate
goal is to define a mechanism of reaction based on quantitative analysis to
evaluate whether a given model meets the criteria of being both necessary
and su�cient to account for the data. This quantitive analysis sets a high
standard for evaluation of a proposed model.

1.8.1 Bullet point summary

• Models are important in biochemistry because they frame the questions
to be addressed and provide a quantitive basis for fitting data to evaluate
the validity of the model and predict new experiments.

• The term “rate constant” is only used to refer to a true rate constant,
as illustrated by a lowercase k over an arrow in a pathway: A

k��! B.

• Equations can be solved for simple models according to the experiment,
and these are valuable for preliminary data fitting to estimate parameters
and suggest the underlying model.

• Simplifying approximations are required to solve most equations, which
limits the range over which experiments can be interpreted to satisfy
the approximations.

• Data fitting using exponential functions provides estimates of the net
decay rate (eigenvalue). Eigenvalues are usually complex functions of
rate constants and concentrations—they are not “observed rate con-
stants.”

• Various experiments di�er only by the starting concentrations of reac-
tants and the nature of the measured signal (Figure 1.10). This infor-
mation is entered into KinTek Explorer software to model kinetics and
fit data, allowing multiple experiments to be fit simultaneously using a
single, unified model, and thereby transcending the need for a di�erent
equation to fit each experiment.


